Math 53: Multivariable Calculus

Worksheet for 2021-09-03

Conceptual questions

what are the largest and smallest possible values of **u** · **v**? Draw pictures of both situations.

Question 1. If u, v are vectors of lengths 2 and 3 respectively, and say what kind of shape it is. Can you interpret the vector equation of this shape geometrically?

Question 3. The following are true for vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3$:

Question 2. If $\mathbf{r} = \langle x, y \rangle$, $\mathbf{a} = \langle a_1, a_2 \rangle$, and $\mathbf{b} = \langle b_1, b_2 \rangle$, expand out the equation

 $(\mathbf{r} - \mathbf{a}) \cdot (\mathbf{r} - \mathbf{b}) = 0$

 $\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos \theta$ $|\mathbf{u} \times \mathbf{v}| = |\mathbf{u}| |\mathbf{v}| \sin \theta$

where θ is the angle between them. Given **u**, **v** and asked for θ , which of the above equations would you use, and why?

Computations

Problem 1. Consider the cube with opposite corners (0, 0, 0) and (2, 2, 2), whose edges are parallel to the coordinate axes in \mathbb{R}^3 . The intersection of this cube with the plane x + y + z = 3 is a hexagon! Show that this hexagon is *regular*, meaning that all of its edges are the same length, and that all of its interior angles are the same as well.